Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database.

نویسندگان

  • Mohammed Saeed
  • Mauricio Villarroel
  • Andrew T Reisner
  • Gari Clifford
  • Li-Wei Lehman
  • George Moody
  • Thomas Heldt
  • Tin H Kyaw
  • Benjamin Moody
  • Roger G Mark
چکیده

OBJECTIVE We sought to develop an intensive care unit research database applying automated techniques to aggregate high-resolution diagnostic and therapeutic data from a large, diverse population of adult intensive care unit patients. This freely available database is intended to support epidemiologic research in critical care medicine and serve as a resource to evaluate new clinical decision support and monitoring algorithms. DESIGN Data collection and retrospective analysis. SETTING All adult intensive care units (medical intensive care unit, surgical intensive care unit, cardiac care unit, cardiac surgery recovery unit) at a tertiary care hospital. PATIENTS Adult patients admitted to intensive care units between 2001 and 2007. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database consists of 25,328 intensive care unit stays. The investigators collected detailed information about intensive care unit patient stays, including laboratory data, therapeutic intervention profiles such as vasoactive medication drip rates and ventilator settings, nursing progress notes, discharge summaries, radiology reports, provider order entry data, International Classification of Diseases, 9th Revision codes, and, for a subset of patients, high-resolution vital sign trends and waveforms. Data were automatically deidentified to comply with Health Insurance Portability and Accountability Act standards and integrated with relational database software to create electronic intensive care unit records for each patient stay. The data were made freely available in February 2010 through the Internet along with a detailed user's guide and an assortment of data processing tools. The overall hospital mortality rate was 11.7%, which varied by critical care unit. The median intensive care unit length of stay was 2.2 days (interquartile range, 1.1-4.4 days). According to the primary International Classification of Diseases, 9th Revision codes, the following disease categories each comprised at least 5% of the case records: diseases of the circulatory system (39.1%); trauma (10.2%); diseases of the digestive system (9.7%); pulmonary diseases (9.0%); infectious diseases (7.0%); and neoplasms (6.8%). CONCLUSIONS MIMIC-II documents a diverse and very large population of intensive care unit patient stays and contains comprehensive and detailed clinical data, including physiological waveforms and minute-by-minute trends for a subset of records. It establishes a new public-access resource for critical care research, supporting a diverse range of analytic studies spanning epidemiology, clinical decision-rule development, and electronic tool development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accessing the public MIMIC-II intensive care relational database for clinical research

BACKGROUND The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a d...

متن کامل

Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database

W e report the establishment of the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) research database that is notable for four factors: it is publicly and freely available to other research organizations upon request; it encompasses a diverse population of intensive care unit (ICU) patients; it contains high temporal resolution data, including laboratory results, electroni...

متن کامل

Design and Implementation of a Fuzzy Intelligent System for Predicting Mortality in Trauma Patients in the Intensive Care Unit

Introduction: The intensive care unit is one of the most costly parts of the national health sector. These costs are largely attributable to the length of stay in the intensive care unit. For this reason, there are significant benefits in predicting patients' length of stay and the percentage of deaths in intensive care units. Therefore, in this study, a fuzzy logic based intelligent system was...

متن کامل

Design and Implementation of a Fuzzy Intelligent System for Predicting Mortality in Trauma Patients in the Intensive Care Unit

Introduction: The intensive care unit is one of the most costly parts of the national health sector. These costs are largely attributable to the length of stay in the intensive care unit. For this reason, there are significant benefits in predicting patients' length of stay and the percentage of deaths in intensive care units. Therefore, in this study, a fuzzy logic based intelligent system was...

متن کامل

Explaining Management Status of Intensive Care Units Beds: A Qualitative Study

Introduction: Access to intensive care unit (ICU) beds varies in different countries. Due to the population growth, aging, and longer survival of chronic patients, demand for these beds is increasing all over the world. The present study was performed to assess the management status of ICU beds in selected teaching hospitals affiliated to Shahid Beheshti University of Medical Sciences. Method:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Critical care medicine

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2011